# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "RobustPrediction" in publications use:' type: software license: GPL-3.0-only title: 'RobustPrediction: Robust Tuning and Training for Cross-Source Prediction' version: 0.1.5 doi: 10.32614/CRAN.package.RobustPrediction abstract: 'Provides robust parameter tuning and model training for predictive models across data sources. This package implements three primary tuning methods: cross-validation-based internal tuning, external tuning, and the ''RobustTuneC'' method. It supports Lasso, Ridge, Random Forest, Boosting, and Support Vector Machine classifiers. The tuning methods are based on the paper by Nicole Ellenbach, Anne-Laure Boulesteix, Bernd Bischl, Kristian Unger, and Roman Hornung (2021) "Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning" .' authors: - family-names: He given-names: Yuting email: Yuting.He@campus.lmu.de repository: https://yuting-he.r-universe.dev repository-code: https://github.com/Yuting-He/RobustPrediction commit: 3358e520229cf9327d17d0ade8724c1cacc71bde url: https://github.com/Yuting-He/RobustPrediction contact: - family-names: He given-names: Yuting email: Yuting.He@campus.lmu.de